Comparing Two Meta-Heuristic Approaches for Solving Complex System Reliability Optimization
نویسندگان
چکیده
Using meta-heuristic approaches to solve reliability and redundancy allocation problems (RRAP) has become attractive for researchers in recent years. In this paper, an optimization model is presented to maximize system reliability and minimize system cost simultaneously for multi-state weighted k-out-of-n systems. The model tends to optimize system design and maintenance activities over functioning periods that provides a dynamic modeling. A recently developed meta-heuristic approach imperialist competitive algorithm (ICA) and genetic algorithm (GA) are used to solve the model. The computational results have been compared to find out which approach is more appropriate for solving complex system reliability optimization models. It is shown that GA can find the better solution while ICA is a faster approach. In addition, an investigation is done on different parameters of the ICA.
منابع مشابه
Solving a Joint Availability-Redundancy Optimization Model with Multi-State Components with Meta-Heuristic
This paper has been worked on a RAP with multi-state components and the performance rate of each component working state may increase by spending technical and organizational activities costs. Whereas RAP belongs to Np-Hard problems, we used Genetic algorithm (GA) and simulated annealing (SA) and for solving the presented problem and calculating system reliability universal generating function ...
متن کاملA Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem
The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...
متن کاملA Hybrid Meta-heuristic for the Dynamic Layout Problem with Transportation System Design
This paper primarily presents a comprehensive dynamic layout design model which integrates layout and transportation system design via considering more realistic assumptions, such as taking account of fixed-position departments and distance between departments that endanger each other. In addition, specific criteria such as capacity, cost and reliability of facilities are considered in transpor...
متن کاملOptimum Parameters for Tuned Mass Damper Using Shuffled Complex Evolution (SCE) Algorithm
This study is investigated the optimum parameters for a tuned mass damper (TMD) under the seismic excitation. Shuffled complex evolution (SCE) is a meta-heuristic optimization method which is used to find the optimum damping and tuning frequency ratio for a TMD. The efficiency of the TMD is evaluated by decreasing the structural displacement dynamic magnification factor (DDMF) and acceleration ...
متن کاملSolving the vehicle routing problem by a hybrid meta-heuristic algorithm
The vehicle routing problem (VRP) is one of the most important combinational optimization problems that has nowadays received much attention because of its real application in industrial and service problems. The VRP involves routing a fleet of vehicles, each of them visiting a set of nodes such that every node is visited by exactly one vehicle only once. So, the objective is to minimize the to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015